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The first-order perturbation thecry of liquids was used for developing an approximate expression
suitable for a rapid calculation of the heat of vaporization of nonpolar liquids fcrmed by ap-
proximately spherical molecules. The calculation uses only available physico-chemical preperties
of substances, namely the critical data. The results are tested by a comparison with existing
experimental data on a series of nonpolar substances. The agreement between calculated values
and expzrimental data is relatively good. The maximum deviation between theoretical and ex-
parimental values does not exceed +10%.

In the solution of many chemical-engineering and physico-chemical problems, the
knowledge of heats of vaporization and mixing of nonelectrolytes and of their tempe-
rature dependences is often required. Owing to this fact, a considerable attention is
being paid to the experimental as well as theoretical study of this problem. Especially,
recently developed perturbation methods in the statistical mechanics of fluids! ™3
offer a possibility for an easy prediction of different thermodynamic functions.

This paper is dealing with a rapid and simple application of the perturbation
methods to the calculation of enthalpic quantities. The relation proposed is tested by
a comparison with available literature data.

THEORETICAL

Perturbation methods’ =3 commonly employed in statistical-thermodynamics calcu-
lations of fluids make use of the knowledge of the structure and, consequently, of
properties of a certain reference system, which approximates closely, by the arrange-
ment of its particles, the system studied. As a reference, the hard-sphere system is
most often selected, since it represents in a simple manner repulsive forces, which
affect most significantly the structure and related thermodynamic properties of the
real system. Due to the extreme simplicity of the hard sphere potential curve, thermo-
dynamic functions of this reference system can be determined with high accuracy.
Deviations in the behaviour of real systems from reference ones, which are brought
about mainly by the existence of attractive forces, are interpreted in these methods
as perturbations.
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The first-order perturbation method yields the following expression for the Helm-
holtz free energy F of the system studied®

F=F,+ 21tnNJ‘ u,(r) go(r) r*dr, (1)

0

where n = N|V is the average number density, N Avogadro’s constant, ¥ molar
volume, r intermolecular distance, up(r) perturbation potential (thc difference bz-
tween the potential used for the description of interactions in the system investigated
and the reference polemial), go(r) radial distribution function in the reference hard-
sphere system and F, Helmholtz free energy of the reference system.

Intermolecular interactions in liquids investigated were approximated by a simple
square-well potential defined by

u(r)—+oo for r<o,
u(r) = o<rsyo, @)
u(r) = r<yo

The parameters ¢ and o were obtained from generalized relations* (recommended
for parameters ¢y and oy, in the Lennard-Jones 12 :6 potential) as & = 0-56¢,,
o = oy, The parameter y was obtained from the equality bztween the value of the
second virial coefficient B and the expression for this coefficient in a system of par-
ticles obeying the square-well potential. This equality leads to

* = (1 — Bfb, + 4)/4, (3)

where A = exp (¢/kT) — 1, k is Boltzmann’s constant and b, is the second virial
coefficient in the hard sphere system (b, = 2/3nNo®). Values of the coefficient B were
obtained from the Redlich-Kwong generalized relation®.

As a reference, we considered the system of hard spheres with their diameter d
equal to the parameter o of the square-well potential.

Lengthy numerical integration, required by a relatively complicated course of the
radial distribution function in the hard sphere system, was avoided by the following
approximation: it was found by a numerical analysis of courses of go(r) obtained
from the solution of the Percus-Yevick equation® that at densities y = (x/6) no*>
of most liquids from the range y € <0-37, 0-58), go(r) drop for the first time to the
value go = 1 on the average at rfo = A = 1-275 (40-075) and that it only weakly
oscillates about the value go(r > 40) = 1 at r > i¢ (Fig. 1). At r > o, the course
of the radial distribution function was replaced by a straight line starting at the con-
tact point of hard spheres, which is given by the Carnahan-Starling approximation’
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go(" = U) =

2=t =), )

B | =

and ending at r = Ao and go(r = A0) = 1.

At r > Ao, the function g,(r) was approximated by constant g, = 1. Since in this
simple variant the hard-sphere diameter is independent of temperature, the integrand
in Eq. (1) is also independent of temperature and the perturbation contribution to
the internal energy, AU = U — U,, where U, is the internal energy of the reference
system at the same temperature and volume, is given by

0
AU = 21!an u(r) go(r) r* dr, (%)
o
where u(r) = u(r) for r > ¢ and u,(r) = 0 for r = 0. The use of the above approx-
imations yields the simple expression
AU = —Ryelk[4y> + 1:9728g4(c, y) — 59736] , (6)
in which R denotes the universal gas constant and the symbol g,(c, y) emphasizes
the dependence on density.

The number density y was determined also by using the perturbation approach,
namely by solving the equation

20) = 2es() + % [(F — Fo)/NkT]; = 0. )

s

Fic. 1
The Illustration of the Approximations Used
for the Radial Distribution Functions g(x)
in the Reference Hard-Sphere System As
Functions of x = r/§

Exact courses for three values of the re-
duced density y; = 0:37, y, = 0:475, y3 =
= 0-58 (full line) are approximated always
by two linear sections (dashed line).
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In this equation, z(y) is the compressibility factor and z.(y) is the Carnahan-Starling
approximation to this quantity for a hard sphere system

z(y) = (L + y + 2 + y3)(L - »?). (8)

Taking into account the properties of the hard-sphere system and the approxi-
mations employed, we can approximate the heat of vaporization of liquids investi-
gated by

AH,,, = —AU + p AV = —AU + RT. ©)

Eq. (9) was used for calculating the heat of vaporization of substances with a negli-
gible or weak polarity and with insignificant deviations from the spherical symmetry.

RESULTS AND DISCUSSION

The results of our calculations are given in Table I. Agreement with a available litera-
ture data® ~?° is relatively good. The deviations do not exceed +10%, mostly ranging
up to +6%, which is satisfactory since most parameters affecting the results were cal-

culated from approximate expressions.

TasLE I

Parameters Employed for the Sqaure-Well Potential and the Comparison between Calculated
Values of Heats of Vaporization (J . mol~!) and Experimental Data®

Substance € o y T,K AH, . AH,,, i
CeHy, 349-36 55109 17969 29815 31335 33037  —0-052
cs, 348-73 44484 17979 27315 2799 28483  —0-017
CH,Cl, 32220 46861 17964 31365 30416 27940 0-089
ccl, 351-38 5-3089 17970  273-15 33066 33543  —0014
CsHyo 323215 51785 17973 . 29815 26768 28498  —0-060
CHCly 338-88 49359 17971 31315 27983 30428  —0-080
C,H, 37513 56291 17969 29815 39213 38016 0-030
Ar® 6709 34050 1-8000  115-80 55054 - -
Kre 93-69 3-6330 1-8000 115-80 10 5239 — —

@ Values of AH,,, taken from ref871% P 5= (AH ) — AH ) AH, . © Values of the para*
meters ¢ o, ¥ taken from ref.”; 9 Results of calculations from the literature: Monte-Carlo
Ar 4945 (ref.!*), Kr 8523 (ref.!#); the perturbation theory Ar 4706 (ref.'®), 5069 (ref.'),

Kr 8211 (ref.!%), 8506 (ref.!®).
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Calculated values of density y (resp. volume V) exhibit excellent agreement with
experimental data (below 5% independently of the initial value in the solution of the
equation z(y) = 0}. Theoretical values of density were then used in our calculations.
(Deviations in AH,,, when calculated from experimental or theoretical values of
density, resp., were lower than 2%).

The calculation itself is based on an approximate use of the first-order perturbation
expansion. The reference radial distribution function was employed also for particles
with a lower symmetry. Within the range of the potential interaction it was replaced
with two linear sections. It is obvious from Fig. 1 that this replacement is most
accurate in the low density region.

Further, we constructed the dependence A = A(y) for several values of y and found
out that this modification improves in most cases the agreement with experimental
data (at higher densities by ~2%).

One of the reasons for quantitative deviations from experimental data is a simplified
approximation of intermolecular forces by the square-well potential, which cannot
describe accurately the intermolecular interaction.

In the liquid region, where distances bztween particles are relatively short, we can
use the potential which cuts off more remote interactions without a danger of deterio-
rating the results to a greater extent. The quantitative agreement depends on a suitable
selection of parameters ¢, ¢ and y. The rules employed for determining ¢ and ¢ had
been recommended for the Lennard-Jones potential*. In our case, the correction
to the realistic course was performed by a procedure leading to the parameter y.
The fact, that the potential employed is on the whole a plausible approximation to the
reality, is manifested by the scatter among values of y obtained from the virial coef-
ficients at different temperatures which does not exceed 2— 3% within 100°C. In our
work we used the value at the boiling point. The square-well potential parameters em-
ployed are given in Table 1.

Certain inaccuracies are brought about by the use of spherically symmetrical func-
tions for molecules with a lower symmetry. In comparison with the other approxi-
mations employed, however, this inadequacy is less apparent than in more accurate
applications of the perturbation expansion'’''2. The simplified potential cannot
describe well the behaviour in a wider temperature range.

To be able to evaluate the agreement between the theory and experiment on data
which are not affected by the uncertainty due to the approximation of real intermole-
cular forces, we performed a comparison with pseudoexperimental Monte-Carlo
data'* (which correspond to the behaviour of Ar and Kr — cf. Table I). The agree-
ment is satisfactory even in this case.

It was not the aim of our work to find an empirical procedure which would yield
the most accurate relation for estimating the value of AH,,,, since existing empirical
rules (e.g., by Kistiakowski'?) can predict this quantity for nonpolar liquids at the
normal boiling point with good accuracy. Our derivation starts from and strictly
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adheres to model conceptions of the statistical mechanics and, simultaneoulsy, it
follows the idea of obtaining simple relations (6) and (9). Neither incorrect and un-
natural assumptions nor empirical constants were used in our derivation, only several
functions were simplified mathematically. Parameters of the intermolecular interaction
were calculated from critical data by using generalized methods.

A further mathematical simplification in which values of density y are calculated
from the Watson relation'? instead of the solution to Eq. (7), gives approximately
the same agreement with experimental data.

The agreement between experimental data and calculated values of AH,,; of the
testing substances may be denoted, with respect to the approximations employed,
as satisfactory; the maximum deviation is +10%.

In our next communication we are going to apply this simplified variant of the
perturbation method to the calculation of the heat of mixing.

Thanks are due to Dr M. Smisek for his interest and support, which enabled to complete this work,
and to Dr V. KFestanovd for her friendly help with the review of the manuscript.
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‘Translated by K. Hlavaty.
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