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The first-order perturbation thec ry of liquids was used for developing an approximate expression 
suitable for a rapid calculation of the heat of vaporization of nonpolar liquids fcrmed by ap­
proximately spherical molecules. The calculation uses only available physico-chemical prcperties 
of substances, namely the critical data . The results are tested by a comparison with existing 
experimental data on a series of nonpolar substances. The agreement between calculated values 
and experimental data is relatively good. The maximum deviation between theoretical and ex­
perimental values does not exceed ± 10%. 

In the solution of many chemical-engineering and physico-chemical problems, the 
knowledge of heats of vaporization and mixing of nonelectrolytes and of their tempe­
rature dependences is often required. Owing to this fact, a considerable attention is 
being paid to the experimental as well as theoretical study of this problem. Especially, 
recently developed perturbation methods in the statistical mechanics of fluids l

-
3 

offer a possibility for an easy prediction of different thermodynamic functions. 
This paper is dealing with a rapid and simple application of the perturbation 

methods to the calculation of enthalpic quantities. The relation proposed is tested by 
a comparison with available literature data. 

THEORETICAL 

Perturbation methods 1
- 3 commonly employed in statistical-thermodynamics calcu­

lations of fluids make use of the knowledge of the structure and, consequently, of 
properties of a certain reference system, which approximates closely, by the arrange­
ment of its particles, the system studied. As a reference, the hard-sphere system is 
most often selected, since it represents in a simple manner repulsive forces, which 
affect most significantly the structure and related thermodynamic properties of the 
real system. Due to the extreme simplicity of the hard sphere potential curve, thermo­
dynamic functions of this reference system can be determined with high accuracy. 
Deviations in the behaviour of real systems from reference ones, which are brought 
about mainly by the existence of attractive forces, are interpreted in these methods 
as perturbations. 
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The first-order perturbation method yields the following expression for the Helm­
holtz free energy F of the system studied 1 

(1) 

where n = N/V is the average number density, N Avogadro's constant, V molar 
volume, r intermolecular distance, up(r) perturbation potential (the difference be­
tween the potential used for the description of interactions in the system investigated 
and the reference potential), goer) radial distribution function in the reference hard­
sphere system and F 0 Helmholtz free energy of the reference system. 

Intermolecular interactions in liquids investigated were approximated by a simple 
square-well potential defined by 

u(r) = + 00, for r ~ a, 

u(r) = -e, 

u(r) = 0, 

a < r ~ ya, 

r < ya. 

(2) 

The parameters e and a were obtained from generalized relations4 (recommended 
for parameters eLJ and aLJ in the Lennard-Jones 12 : 6 potential) as e = 0'56eL J, 

a = aLJ. The parameter y was obtained from the equality between the value of the 
second virial coefficient B and the expression for this coefficient in a system of par­
ticles obeying the square-well potential. This equality leads to 

(3) 

where LI = exp (e/kT) - 1, k is Boltzmann's constant and bo is the second virial 
coefficient in the hard sphere system (bo = 2/3rrNa3

). Values of the coefficient B were 
obtained from the Redlich-Kwong generalized relationS. 

As a reference, we considered the system of hard spheres with their diameter d 
equal to the parameter a of the square-well potential. 

Lengthy numerical integration, required by a relatively complicated course of the 
radial distribution function in the hard sphere system, was avoided by the following 
approximation: it was found by a numerical analysis of courses of goer) obtained 
from the solution of the Percus-Yevick equation6 that at densities y = (rr/6) na 3 

of most liquids from the range y E <0'37, 0'58) , goer) drop for the first time to the 
value go = 1 on the average at ria = A = 1·275 (±0'075) and that it only weakly 
oscillates about the value goer > Aa) = 1 at r > Aa (Fig. 1). At I' > a, the course 
of the radial, distribution function was replaced by a straight line starting at the con­
tact point of hard spheres, which is given by the Carnahan-Starling approximation 7 
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(4) 

and ending at r = ).a and goer = ).a) = 1. 

At r > A.a, the function goer) was approximated by constant go = 1. Since in this 
- simple variant the hard-sphere diameter is independent of temperature, the integrand 

in Eq_ (1) is also independent of temperature and the perturbation contribution to 
the internal energy, flU = U - U 0' where U 0 is the internal energy of the reference 
system at the same temperature and volume, is given by 

(5) 

where up(r) = u(r) for r > a and up(r) = 0 for r ~ a_ The use of the above approx­
imations yields the simple expression 

flU = -Rys/k[4y3 + 1-9728go(a, y) - 5-9736], (6) 

in which R denotes the universal gas constant and the symbol go(a, y) emphasizes 
the dependence on density_ 

The number density y was determined also by using the perturbation approach, 
namely by solving the equation 

8 
z(y) = zcs(y) + y - [(F - Fo)/NkTJT = 0_ 

8y 

FIG_ 1 

The Illustration of the Approximations Used 
for the Radial Distribution Functions g(x) 
in the Reference Hard-Sphere System As 
Functions of x = rio 

Exact courses for three values of the re­
duced density Yl = 0-37, Y2 = 0-475, Y3 = 
= 0-58 (full line) are approximated always 
by two linear sections (dashed line)_ 

Collection Czechoslov. Chern . Commun. [Vol. 44J [1979J 

..!. r 
OL-~~12'-~~1~~--~~~--1~'8~ 

(7) 



310 Kyselka, Rames, Prochazka: 

In this equation, z(y) is the compressibility factor and zcs(y) is the Carnahan-Starling 
approximation to this quantity for a hard sphere system 

(8) 

Taking into account the properties of the hard-sphere system and the approxi­
mations employed, we can approximate the heat of vaporization of liquids investi­
gated by 

flHvap = -flU + pflV= -flU + RT. (9) 

Eq. (9) was used for calculating the heat of vaporization of substances with a negli­
gible or weak poli;lrity and with insignificant deviations from the spherical symmetry. 

RESULTS AND DISCUSSION 

The results of our calculations are given in Table 1. Agreement with a available litera­
ture data S 

-10 is relatively good. The deviations do not exceed ± 10%, mostly ranging 
up to ± 6%, which is satisfactory since most parameters affecting the results were cal­
culated from approximate expressions. 

TABLE I 

Parameters Employed for the Sqaure-Well Potential and the Comparison between Calculated 
Values of Heats of Vaporization (J . mol-I) and Experimental DataO 

Substance G T,K ilHcalc ilHexp ab 

C6 H12 349'36 5·5109 1·7969 298·15 31 335 33037 -0·052 
CS2 348·73 4·4484 1·7979 273·15 27996 28483 -0·017 
CH2 Cl z 322·20 4·6861 1·7964 313-65 30416 27940 0·089 
CCI4 351·38 5·3089 1·7970 273·15 33066 33543 -0'014 
CsH tO 323·215 5'1785 1·7973 298·15 26768 28498 -0·060 
CHCI 3 338·88 4·9359 1·7971 313·15 27983 30428 -0·080 

C7HS 375·13 5-6291 1·7969 298·15 39213 38016 0·030 
ArC 67·09 3·4050 1'8000 115·80 5505d 

Krc 93-69 3-6330 1-8000 115·80 10 523d 

° Values of ilHexp taken from ref.S
-

IO
; b a = (ilHcalc - ilHexp)/ilHe,p; C Values of the para­

meters E, G, I' taken from ref.14; d Results of calculations from the literature: Monte-Carlo 
Ar 4945 (ref.t 4), Kr 8523 (ref. 14); the perturbation theory Ar 4706 (ref. IS), 5069 (ref.16), 

Kr 8211 (ref. IS), 8506 (ref.16). 
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Calculated values of density y (resp. volume V) exhibit excellent agreement with 
experimental data (below 5% independently of the initial value in the solution of the 
equation z(y) = 0). Theoretical values of density were then used in our calculations. 
(Deviations in i1H vap when calculated from experimental or theoretical values of 
density, resp., were lower than 2%). 

The calculation itself is based on an approximate use of the first-order perturbation 
expansion. The reference radial distribution function was employed also for particles 
with a lower symmetry. Within the range of the potential interaction it was replaced 
with two linear sections. It is obvious from Fig. 1 that this replacement is most 
accurate in the low density region. 

Further, we constructed the dependence A = A(y) for several values of y and found 
out that this modification improves in most cases the agreement with experimental 
data (at higher densities by ~2%). 

One of the reasons for quantitative deviations from experimental data is a simplified 
approximation of intermolecular forces by the square-well potential, which cannot 
describe accurately the intermolecular interaction. 

In the liquid region, where distances between particles are relatively short, we can 
use the potential which cuts off more remote interactions without a danger of deterio­
rating the results to a greater extent. The quantitative agreement depends on a suitable 
selection of parameters e, (J and y. The rules employed for determining e and (J had 
been recommended for the Lennard- Jones potential4

. In our case, the correction 
to the realistic course was performed by a procedure leading to the parameter y. 

The fact, that the potential employed is on the whole a plausible approximation to the 
reality, is manifested by the scatter among values of y obtained from the virial coef­
ficients at different temperatures which does not exceed 2 - 3% within 100°C. In our 
work we used the value at the boiling point. The square-well potential parameters em­
ployed are given in Table I. 

Certain inaccuracies are brought about by the use of spherically symmetrical func­
tions for molecules with a lower symmetry. In comparison with the other approxi­
mations employed, however, this inadequacy is less apparent than in more accurate 
applications of the perturbation expansion ll

•
12

• The simplified potential cannot 
describe well the behaviour in a wider temperature range. 

To be able to evaluate the agreement between the theory and experiment on data 
which are not affected by the uncertainty due to the approximation of real intermole­
cular forces, we performed a comparison with pseudoexperimental Monte-Carlo 
data14 (which correspond to the behaviour of Ar and Kr - cf. Table I). The agree­
ment is satisfactory even in this case. 

It was not the aim of our work to find an empirical procedure which would yield 
the most accurate relation for estimating the value of i1Hv• p , since existing empirical 
rules (e.g., by Kistiakowski12

) can predict this quantity for nonpolar liquids at the 
normal boiling point with good accuracy. Our derivation starts from and strictly 
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adheres to model conceptions of the statistical mechanics and, simultaneoulsy, it 
follows the idea of obtaining simple relations (6) and (9). Neither incorrect and un­
natural assumptions nor empirical constants were used in our derivation, only several 
functions were simplified mathematically. Parameters of the intermolecular interaction 
were calculated from critical data by using generalized methods. 

A further mathematical simplification in which values of density yare calculated 
from the Watson relation 13 instead of the solution to Eq. (7), gives approximately 
the same agreement with experimental data. 

The agreement between experimental data and calculated values of flHvap of the 
testing substances may be denoted, with respect to the approximations employed, 
as satisfactory; the maximum deviation is ± 10%. 

In our next communication we are going to apply this simplified variant of the 
perturbation method to the calculation of the heat of mixing. 

Thanks are due to Dr M. SmiSek for his interest and support. which enabled to complete this work. 
and to Dr V. Kfestanovd for her friendly help with the review of the manuscript. 
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